« minimum is reached at a rather higher
pressure. Sodium and potassium behave
rather differently from the others: for
these two metals K increases rather
slowly after the minimum has been
reached. Nevertheless it seems that in
all these metals we are seeing the effect
on K of progressive distortion of the
Fermi surface.

Pressure Coeflicients and

Thermocelectric Power

At high temperatures (temperatures
which are large as compared to the
characteristic temperature of the lat-
tice) the absolute thermoelectric power
of a metal § is related to its resistivity
by the following relationship (23):

kT (d In p(E)

_ ____) (9)
3¢Er \ dInE JE=Er

§i=

(k is Boltzmann's constant and e is the
clectronic charge). This relationship
(24) expresses the fact that the thermo-
clectric power of a metal depends on
how the resistivity of the metal varies
with its Fermi energy, and from the
measured values of the thermoelectric
power of a metal at high temperature
it is thus possible to obtain a measure
of this variation through the quantity

_ (dlnp(E))
T dinE JE=Er

One way of altering the Fermi energy
of a metal is to compress it. Thus there
should be some relationship between
the volume coefficient of resistivity and
the value of x for that metal. It is not
to be expected that x will be related to
the total change of resistance due to
the volume change because this involves
the change in the amplitude of the
lattice vibrations, which has no counter-
part in x. If, however, we eliminate
the part due to changes in the lattice
vibrations and consider dIn K/dInV,
we might expect that this would be
related to x. In Table 2 a comparison
of these quantities is made for the
monovalent metals, and the ratios are
listed (column 6). If the change in K
with volume were due entirely to the
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change in the Fermi energy E, with
volume and if the Fermi surface did
not distort under pressure, this ratio
would be simply dlIn Eu/dInV. For
a spherical Fermi surface this has the
value — 2/3, since Ej is proportional
to V-2/3, It may be seen that for all
the metals the value lies between — 0.3
and — 0.8; in particular for sodium
and potassium, the two metals whose
Fermi surfaces are most nearly spheri-
cal, the value of the ratio is quite close
to —2/3.

If the interpretation given above of
the minimum in the resistance-versus-
pressure curve of cesium is correct, and
if the thermoelectric power is intimately
related to the quantity dInK/dInV,
the thermoelectric power of cesium
should be very sensitive to pressure
and should in fact change sign at quite
modest pressures (pressures similar to
that required to reduce the resistance
to its minimum value). Recent meas-
urements on the thermoclectric power
of cesium at 0°C (25) show that this
change of sign docs indeed occur and
that the thermoelectric power of cesium
is extremely sensitive to pressure; it
changes by nearly 1/2 percent per
atmosphere.

To sum up, we may say that the pres-
sure coefficient of the ideal resistivity
of a metal changes appreciably only at
Jow temperatures (7 < #/3); more-
over, experiments show that this change
is related to the change in the tempera-
ture coefficient of resistivity in the way
that theory predicts. There appears to
be a close connection between the elec-
tronic contribution to the pressure co-
efficient of resistance on the one hand
and the thermoelectric power of the
metal on the other. When one comes
to consider the magnitude of the pres-

sure coefficient it is clear that in some

metals, notably lithium, cesium, and the
noble metals, this can only be under-
stood in terms of the distortion of the
Fermi surface of the metal. This dis-
tortion is also reflected in the tempera-
ture dependence and the magnitude of
the resistivity. All this emphasizes how
desirable it would be to obtain direct
information about the shape of the
Fermi surfaces in alkali metals (26).
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